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Abstract—Fully developed laminar combined free and forced convection through vertical non-circular
ducts is studied. Geometries treated are (i) right-angled triangle, (ii) isosceles triangle and (iii) rhombic
ducts. Uniform axial heat flux and uniform peripheral wall temperature are assumed. All fluid properties
are considered constant except for variation of density in the buoyancy terms. Approximate solutions of
the problem have been obtained by (i) variational calculus and (ii) finite-difference procedure. For rhombic
duct an exact solution for pure forced convection is also presented. For the right-angled triangle the
Nusselt number (Ny,) becomes insensitive to the duct angle (o) as the value of the Rayleigh number (Ng,)
is increased from zero to about two thousand. As the Rayleigh number is further increased to say ten
thousand, the duct angle again becomes important. For the right-angled triangle, at N, = 0 the maximum
value of the Nusselt number is obtained when a = 45°, while when Ng, = 10000 its minimum value is
obtained at & = 45°. For the isosceles triangle, the Nusselt number also becomes insensitive to the duct
angle as the value of the Rayleigh number is increased from zero to about two thousand. As the Rayleigh
number is further increased, to ten thousand, the duct angle again becomes important. For the isoceles
triangle, at Ng, = 0, maximum value of the Nusselt number is obtained at « = 60° while at Ny, = 10000,
its maximum value occurs when a — 90°. For the thombic duct the effect of the duct angle diminishes as
the value of the Rayleigh number is increased from zero.

g, gravitational acceleration ;

NOMENCLATURE .
. h, average peripheral heat transfer co-
A, area of cross-section; efficient :
A, coet;ﬁlménts in the assumed velocity (214 for triangular ducts and tan /2
b p}rlowst, istic lengths of a duct for rhombic duct;
% ¢ afrgc. erls 1€ etllllg sola duct: ’ Npw Nusselt number, dimensionless, hD,/k ;
b ;:oe me;lﬂs m ¢ assumed tempera- Nirs Rayleigh number, dimensionless,
in hoat : (p*9CoC1BD} ) ku;
C,, specific heat of the fluid at constant 0 heat generation rate;
C pr essu:e ’ ¢ q, average surface heat flux;
’ 4 constant,; L. . t, temperature of the fluid ;
C,;, temperature gradient in flow direction ; w axial velocity;
D,, hydraulic diameter; VI’/ mean axial v ei ocity :
E,  pressure drop parameter, dimensionless W’"’ dimensionless axial ,vel ocity, w/W, ;
b b m’
- D,f(@ + ng)] JuW,,; X, Y, respectively, dimensionless coordin-
0z _— ates, x/D, y/Dy;
F, heat generation parameter, dimension- 6, (t —t,);
less, 9/pC,C\W,,; T, dimensionless temperature,
2
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, characteristic angle of the duct;

X ﬁ > »fluid properties in standard notation.

INTRODUCTION

THE STUDY of combined free and forced con-
vection in ducts is of particular importance in
nuclear power plants, heat exchangers, and many
other industrial heat transfer applications. In
flow through vertical ducts and channels,
many of the combined free and forced convection
applications approximate to the case of linearly
varying wall temperature boundary conditions.
A number of theoretical and experimental
investigations are available in this area. Experi-
mental study of laminar flow combined free
and forced convection in vertical circular tubes
under uniform heat flux has been reported by
Brown [1] Hallman {2], Kemeny and Somers [3]
among others. Ostroumov [4], Hallman (5],
and Morton [6] have presented theoretical
studies of the same problem of flow through
vertical circular tubes. Ostrach [7] analysed
combined free and forced convection of heat
generating flows in vertical channels with
linearly varying wall temperature.

In laminar combined free and forced con-
vection in vertical circular tubes, the tempera-
ture as well as the temperature gradient along
circumference remain constant at any tube
section. However, in non-circular tubes, the
flow is retarded at the corners, thereby carrying
away less amount of heat, and increasing the
wall temperature in the corners. The extent of
rotational asymmetry depends upon the shape
of a duct. Under certain circumstances when
the wall is sufficiently thick and its thermal
conductivity is sufficiently high, the inner
peripheral wall temperature may, however, tend
to be uniform. In the fully developed region
the wall temperature can remain linearly varying
in the flow direction, as long as the fluid
properties remain constant, except for variation
of density in the buoyancy terms, however.

Analytical solutions of flow and heat transfer
through noncircular tubes of certain geometries
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can be borrowed from the results of mathematic-
ally analogous differential equations of plate
theory. This has been shown by a number of
authors, for instance [8]-[10] among others.

Han [11], has analysed combined free and
forced convection heat transfer in vertical
rectangular tubes by Fourier series analyses.
Tao [12], [13] suggests a method of solving such
problems by introducing a complex function
whose real and imaginary parts are directly
related to velocity and temperature fields. By
combining the momentum and energy equations,
Helmholtz” wave equation in the complex
domain is obtained. This equation is then solved
in terms of Bessel and associated functions.
Agrawal [14] utilized Tao’s inhomogeneous
Helmholtz’ wave equation in complex domain
and converted it into an equivalent variational
integral. The resulting variational integral was
solved by assuming a suitable polynomial for
the temperature function.

In this report laminar combined free and
forced convection heat transfer in vertical ducts
of three shapes; has been studied; (i) right-
angled triangular, (i) isosceles triangular, and
(iii) rhombic ducts. Of particular importance
is the determination of duct angle which
produces maximum value of the Nusselt number,
in a manner similar to pure forced convection
through triangular ducts [15], [16]. A varia-
tional formulation of the problem has been
obtained and solved without recourse to com-
plex functions. Results have also been compared
with a finite-difference solution, for one of the
geometries. An exact solution of pure forced con-
vection through a rhombic duct is also appended.

STATEMENT OF THE PROBLEM
AND ASSUMPTIONS
Consider fully developed laminar flow through
a straight vertical duct of arbitrary shape as
shown in Fig. 1(a). The flow is in the vertical
upwards direction along the positive z-axis.
Temperature is assumed to vary linearly in the
flow direction. The heat flux in the transverse
direction is assumed to vary in such a manner
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that the wall temperature becomes rotationally
symmetric. Viscous dissipation, pressure and
axial conduction terms in the energy equation
are ignored. The fluid may contain uniform
volume heat sources. All fluid properties are
assumed constant except for variation of the
density in the buoyancy term of the momentum
equation.

Under the above conditions, the momentum
and energy equations can be written as

op
2 —_— e——
HVIw ==+ pg, )
]
kV?t = pew a‘: -0 2
where
02 02
2 — 7 o
Vis o+ v 3)

The density is assumed to vary linearly with
temperature and can be expressed by the
relation,

p = pwll — (t — ty) B, 4

where f is the coefficient of thermal expansion
of the fluid, and the subscript W refers to the
wall conditions. The wall temperature is given
by the relation,

ot
o7
where ¢, is the reference temperature at z =0
and 0t/0z is the constant temperature gradient
in the axial flow direction. When equation (4) is
inserted in (1), the resultant expression can be
written as

tW=tO+Z (5)

op
uViw = <6—z + ng) — pwhgb, (6)
where the temperature difference function 6
is defined as,
6 =1 — tw.

The expressions (1) and (2) can now be
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written in a dimensionless form as,

VW + Ng, T= —E, )
V3T — W = —F, ®)
where
0? ok
2 f—— ——
Vit

In (7) and (8), Ny, and F are prescribed para-
meters, W and T are dependent variables while
E is an unknown constant. We therefore require
an additional equation which is provided by
the continuity considerations

ffwdA = [[dA. 9)

The boundary condition at the walls in equations
(7), ®)is

T=W=0. (10)

An exact analytical solution of equations (7)-
(10) for the three geometries (i) right-angled
triangle, (ii) isosceles triangle and (iii) rhombic
ducts of arbitary angles appears to be very
difficult. In the following sections we present
a variational formulation of the problem, while
the finite-difference procedure is given in
Appendix A. Also an exact solution of pure
forced convection for the rhombic duct is
presented in Appendix B.

VARIATIONAL FORMULATION AND SOLUTION
Consider the expression

I= _”F(Xa Y’ﬁ g’f» gx’fy’ gy) dxdy, (11)
where F is a given function of the variables
X, Y, £, §,fo §» f, and §,. The variables f and g
are supposed to be functions of X and Y; also
fx = 0f/0x etc. The integration is performed
over the area of the duct.

For given F, we obtain different values of I
by substituting different functions f and g in
the right hand side of (11). We are interested
only in those functions which vanish on the
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boundary of the duct and are differentiable
sufficient number of times inside the rhombus.
We call such functions “admissible”.

Let us assume that there is a pair of admissible
functions W and T say, which make I stationary.
Now we investigate the value of I in “the
neighbourhood™ of f = W, § = T. We substi-
tute f= W + ¢,W, 5= T + ¢,T where ¢, and
&, are “small” real constants and W and T
are any two admissible functions. For given
W and T we should have

ol

[_azl_]yEl:Ez‘—‘O N 0
31]
oe,

g1=82=0

(12)

=0 (13)

The equation (11) now becomes
I = jIF(X, Y, w + EIW,T + 82?‘, Wx + £1W;,
T + &, T W, + & W, + T, + &, T) dxdy.
(14

By applying the conditions of equations (12),
(13), we obtain,

é{
asl g1 =e2=0

oF aF
_H(a_ww o )dXdY
=0, {15)
(%)
a82 £}=¢g;=0
OF _ OF . 0F
=”<EFT +a——T e aT, T) dxdYy = 0.
(16)

where dF/0W denotes 8F/0f calculated at the
“point” (X, Y, W, T, W,, T,, W, T).
Applying Green’s theorem to equation (15),

we obtain,
oF 8 [ éF
(aW) "oy (awyﬂ axay

I law- o)
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Since (17) must hold for all admissible functions
W, we must have

oF o [oF d [oF

aw "~ é?(ﬁ)_ 5?(0717) =0y
inside the duct. Similarly, we obtain.

OF _ 0 (F\_ o (oF\_,

0T 0X\dT.) oY\eT,]
inside the duct. While on the boundary of the
duct we will have the condition, W = T = 0.

We are interested in solving equations (7),
(8) which are rewritten here as,

w o [OW
%)+6Y<6Y)+NR“T+E 0 (20

a
oX\f

and

(19)

o [T é [oT
5)‘((5)—()*"53;(57)—%’4—17_0 2y
Comparing (18) with (20) we obtain,

oF
W —Ng T - E, (22)
oF oF
W, W, and oW = W, (23
Therefore
F= —NgTW — EW + W +1W]
+G(X,Y,T,T,T), (24)

where G(X, Y, T, T,, T,) is the ‘“constant” of
integration.

From (24) we obtain,

oF oG

5= ~NeW + 52 (25)
oF G, OF 0G
8T, T, o1, 0T, (26)

We see from (25) that if we want (19) to coincide
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with (21), we should write (21) in the form

d /0T o [oT
NRaEi(é_i) + NRa'é?(é—Y_)
— NeW + N, F=0. (2la)

Comparing (21a) with (19) we obtain,

oF
oF oG
5i= —Nnaﬂ—ﬂ, (28)
oF oG
6—7—,; = —NgJT, = 6—7‘: (29)
Comparing (27) with (25), we obtain
oG
3T = Ng.F. (30)
From (28)30) we obtain,

N .
G = NgFT — —2(T: + TH + H(X, Y) (31)
s

where H(X, Y) is the “‘constant” of integration.
Combining (31) and (24), we obtain,

= N
F=4w2+w?)- —i“-"(ﬁ + T?) — Ng, TW

+ Ng fT — EW + H(X, Y). (32)

It is clear from (11) that the presence of H(X, Y)
in (31) only adds a constant to I and has no
effect on its being stationary under the con-
dition of equation (12). Disregarding H(X, Y)
we finally obtain,

I=f[(W? + W2)dXdY — Ngff(T? + T?)
x dXdY — 2N [[TWdAXdY + 2Ng,F
x [TdXdY — 2EffwdXxdYy.  (33)
Admissible functions W and T which make I
stationary are the solutions to our boundary

value problem. We now solve the problem for
each of the three geometries.
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COMPUTATIONAL PROCEDURE FOR
VARIATIONAL METHOD

(i) Right angled triangular duct

Coordinate system for a right angled tri-
angular duct is shown in Fig. 1(b). Our first
point of interest is to find approximate ex-
pressions for functions W and T. We assume
velocity and temperature expressions as

W =.fb-(A0 +A1X+A2Y+A3X2

+ A XY + A2 +..) (34
T =.ﬁ)'(BO + BIX + BzY + B3X2
+ B, XY + B;Y*+..) (39

where f, = 0 is the equation of the boundary,
and it ensures W =T =0 at the wall To
simplify the equation of boundary and the
resulting calculations, we may take b = 1 [see
Fig. 1(b)]. However, since (7) and (8) have been
non-dimensionalized by the hydraulic diameter,
D,, therefore the final results will require
adjustment by the factor b/D, The equation
of the boundary can now be written as

fo=XY(Y + mX - 1). (36)

The expressions (34), (35) were limited to
six arbitrary coefficients each for numerical
computations. The accuracy of results has been
examined with respect to lesser number of
coefficients and their effect is described under
Discussion. Restricting (34), (35) in this manner,
and substituting in (33) we get

I = I(Ao, Al’ A2, ‘e .As, Bo, Bl’ B2 e Bs, E).

(37

We now minimize I with respect to A’s and
B’s. This gives i2 equations

o _ar

84; 0B,

i

=0, i=012...5 (38)

Since E is also unknown, we need another
equation. This equation is obtained from the
continuity consideration,

{f wdxdy = f[dxdy. (39
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Solution of the thirteen equations (38), (39)
completes the solution of the problem.

(i1) Isosceles triangular duct

Coordinate system for this shape is shown
in Fig. 1(c). The velocity and temperature
profiles for this case will be symmetric about
x-axis but not about y-axis. We have assumed
the expression for velocity and temperature as,

W :.ﬁ).(AO -+ A1Y + 1‘12X2 + A3Y2

+AXPY + A, YY),  (40)
T =fi,'(Bo + BIY -+ BzXz + B3Y2
+ B,XY + B;Y?).  (41)

In a similar fashion to the previous case, the
equation of the boundary for this shape is

L= (Y —mX — (Y + mX - 1). 42)

where perpendicular of the triangle is taken as
unity. Determination of the coefficients 4, B;
and the pressure drop parameter E requires
the same procedure as outlined for case (i).

(iit) Rhombic duct

Coordinate system for the rhombic duct is
given in Fig. 1(d). In view of symmetry of this
duct about the coordinate axis, we write the
approximate expressions for W and T as,

W ‘-'-'—"fi,’(Ao + AIXZ + AzYZ + A3X4

+ AsX?Y?), (43)
T =f, (B, + ByX* + B,Y? + B, X*
+ B, Y* + BX?Y?).  (44)

By taking half of the vertical axis of the rhombus
equal to unity, the equation of the boundary
can be written as

=Y +mX - 1)(Y —mX - 1)

x (Y +mX + 1Y —mX + 1). 45)

The coefficients A4;, B; and the parameter E
are determined in a similar manner as before.
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The method described above can be applied
to a duct with any number of sides. However,
equation (45) indicates that as the number of
sides are increased, the equation of the boundary
tncreases correspondingly and hence the cal-
culations become very lengthy.

Nusselt number

Having obtained the velocity and temperature
functions, the evaluation of Nusselt number is
straight forward.

_hDh_Dh q 1"“F

Nw="=% ty — S T (46)

?Y
X (o}

ty
b

= ~— X (b)

a

tr

{c)

FiG. 1. Coordinate system.
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where T, is the bulk temperature difference
and is given by,

fTwd4
A

T, = W’ @7
A

and § is a factor that depends upon duct
geometry.

This completes evaluation of the Nusselt
Number.

DISCUSSIONS

We would like first of all to examine the
accuracy of the variational results with the
results available in the literature wherever
it is possible. For pure forced convection through
triangular ducts, cases (i) and (ii), the present
results given in Figs. 2 and 3 agree with those
of [15] and [16]. For the rhombx duct, at
a = 90°, when it assumes the shape of a square,
the present results for combined free and forced
convection, Figs. 4, 5, agree with the exact

M. IQBAL, B. D. AGGARWALA and A. G. FOWLER

solution presented by Han [11]. For pure
forced convection, the present analysis gives
Nusselt number of 3-6069 against 3-61 given by
Han.

20~ o’
90

I

N,z hdy/k

\ i I

0% 104

Ny

Fi1G. 5. Nusselt number variation against Rayleigh number
N . for various values of the angle a.

The comparisons given above are based
on six coefficients in the expressions for W
and T for each of the three configurations. It
was desired to study the manner in which the
results are affected by eliminating some of the
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F16. 4. Nusselt number variation against angle a for various values of the Rayleigh number N,
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coefficients in the said expressions. For the
right angled triangle, the elimination of XY
from (34) and (35) appears to affect the Nusselt
number by about five per cent. For the isosceles
triangle, elimination of even two terms, con-
taining X2Y and Y3 in (40) and (41) affects the
Nusselt number by less than five per cent. Still
better results are obtained for the rhombic
duct. Elimination of two terms containing X*
and Y* from (43) and (44) affects the values of
the Nusselt number by less than three per cent.
It might be added that the effect on Nusselt
number by dropping a term in the expressions
for W and T, depends in addition, on the value
of the angle a and the value of Rayleigh number
for a particular duct. For instance, for triangular
ducts, this effect of dropping a term is relatively
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smaller when o is in the neighbourhood of 45°
than when it is in the neighbourhood of 85° or
5°. For rhombic duct, the effect of elimination of
two or three coefficients is almost nil at « = 90°,
It was also noted that while solving equations
of the type (38) and (39), the resulting matrices
are found to be highly unstable at small values of
o. For this reason, in Figs. 2-4 the Nusselt
number values are not given for extreme values
of a. Also, in general it was found necessary
to use double precision in machine calculations,
particularly while evaluating the area integrals.

A direct finite-difference solution of equations
(8)H10) was also obtained, primarily to see
whether it takes more or less machine time to
compute the Nusselt numbers when compared
to that of the variational solution. Some

Table 1. Comparison of Nusselt numbers obtained from the finite-difference
solutions (Appendix A) with those from the variational solutions, for rhombic
duct

Nusselt number

Nga =0 Ny, = 10,000
ao
Finite- Variational Finite- Variational

difference method difference method

method method
90 361 3-6069 83213 8-3136
80 3-5659 3-5794 8-3192 8-3143
70 3-4884 3-4982 83121 8-3159
60 3-3650 3-3665 8-2999 8-3176
50 3-1867 3-1900 8-2845 8-3191
40 2-9692 29778 8-2669 8-3210
30 2:7182 2-7465 8-2498 8-3240
20 2:4514 2:5259 8:2354 8-3279

Table 2. Comparison of velocity and temperature at the centre of rhombic duct as obtained for pure forced convection from
Appendix B with those from the variational solution

o 90 81 72 63 54 45
(W sin® o)/E
Appendix B method 0-07368 0-07223 006793 006109 005215 0-04166
Variational method 0-07385 0-07239 006811 006126 005224 004165
(—T sin* a)/E
Appendix B method 0-004063 0-003906 0-003461 0-002806 0002054 0001319
Variational method 0-004062 0-003905 0-003462 0-002807 0-002049 0-001309
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details of this solution are given in Appendix A.
It was observed that the finite-difference solution
takes about two hundred times more machine
time for every single value of Nusselt number
compared to that of the variational solution.
Some numerical values of Nusselt numbers
obtained by the finite-difference solution for
the thombic duct were compared with those of
the variational results and are given in Table 1.
This table presents the values of Nusselt number
at two extreme values of the Rayleigh number,
Nz, = 0 and 10000. As the agreement of the
results obtained by these two methods was good
and the machine time of the finite difference
method was very long, no further attempt was
made to compute Nusselt numbers by the finite-
difference solution for other geometries. An
attempt was also made tocompare the variational
results with any published exact solution for
any of the three geometries. In [17], an exact
solution is given for bending of a parellelogram
plate. The results of analysis in {17] can be
directly utilized for the case of pure forced
convection through a rhombic duct. These
results are given briefly in Appendix B. A
comparison of the numerical values of velocity
and temperature at the duct centre as obtained
by the exact solution of [17] and the present
variational formulation is given in Table 2.
This table shows that the results of the varia-
tional formulation are indeed very accurate.

We now discuss the general behaviour of the
Nusselt number with the variation of a for
the three geometries considered. Figure 2
presents the plots of Nusselt number against o
for various values of Rayleigh number for the
right-angled triangle. The Nusselt number values
are symmetric about o = 45° At Np, =0, (in
the present analysis meaning pure forced con-
vection) maximum value of Nusselt number
occurs at o = 45°. As the value of Ng, is in-
creased from zero, the Nusselt number becomes
relatively independent of «. This trend continues
until Rayleigh number is in the neighbourhood
of about 2000. As the value of Rayleigh number
is increased still further, say to 5000 and higher,
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it appears that the situation is reversed and now
minimum value of Nusselt number occurs at
o = 45°

For the isosceles triangle, Fig. 3 presents the
plots of Nusselt number against a for various
values of the Rayleigh number. At Ny, = 0, the
maximum value of the Nusselt number is
obtained at o = 60°. As the value of Rayleigh
number is increased to the neighbourhood of
2000 the curves flatten out and the Nusselt
number becomes relatively insensitive to the
variations of a. As the Rayleigh number is
increased still further to 5000 and higher values,
maximum value of Nusselt number is obtained
at o — 90° For this particular geometry, for
Nge > 5000, for some unknown reasons a
local maxima of Nusselt number appears to
occur at 45°.

Figure 4 presents plots of Nusselt number
against o for rhombic duct. For this geometry,
at Ng, =0, the maximum value of Nusselt
number occurs at o = 90°. As the value of a
is reduced, the Nusselt number decreases
accordingly. As value of the Rayleigh number is
increased, the Nusselt number becomes in-
sensitive to the variations in «. This trend con-
tinues to the maximum value of the Rayleigh
number investigated in this analysis.

Figure 5 shows plots of Nusselt number
against Rayleigh number for various values of
a for the rhombic duct. This plot also shows that
as the Rayleigh number value is increased, the
differences between the Nusselt numbers for
various values of the included angle « diminishes
for this geometry.

Hydraulic diameter is almost invariable used
as a characteristic length dimension evaluating
the Nusselt number. For turbulent flow through
non-circular ducts, hydraulic diameter is known
to correlate the pressure drop and heat transfer
phenomena. In laminar flow through non-
circular ducts, hydraulic diameter is not sufficient
to remove the dependence of the heat transfer
results upon geometric parameters. As such,
for one of the geometries, we have also computed
the Nusselt numbers based on a length dimen-
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sion other than the hydraulic diameter. The case
treated is that of rhombus where the Nusselt
number is based on the major axis, 2a. These
plots of Nusselt number based on 2a are pre-
sented in Fig. 6. This figure shows that the
geometric factors involved in the selection of a
characteristic length dimension may show a
completely different trend for Nusselt number

1000
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The plots for pressure drop parameter E
are given in Fig. 7-9. All the three plots indicate
that as the value of Rayleigh number is increased
from zero, the pressure drop parameter becomes
insensitive to the variations in o. In addition,
the values of the pressure drop parameter are
about the same for all the three ducts, under the
same value of the Rayleigh number.
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800 3
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apof 10000 — _
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FiG. 8. Pressure drop parameter E variation against angle « for various values of the
Rayleigh number N,

based on hydraulic diameter (Fig. 4) when
compared to the Nusselt numbers based on
2a (Fig. 6). The remarks made above are purely
to illustrate a fact that the Nusselt number
values and the manner in which they will vary
with o will depend also on the characteristic
length dimension employed in the Nusselt
number itself. A similar observation has been
reported by Sparrow et al. ([18], Fig. 3), for
instance.

Velocity and temperature profiles were ex-
amined. Of particular interest was the behaviour
of the velocity profiles with variations of the
free convection effects and the duct angle. It is
known that for heating in upflow, the lower
density fluid near the walls accelerates upwards.
To satisfy continuity, the flow slows down at the
duct ‘centre’. If the buoyancy effects are large
enough, it is possible to obtain flow reversal
at the duct centre, while the net flow remains



FREE AND FORCED CONVECTION IN DUCTS 1135
1000 ——— T T T T 1 T T -
8004~ -
600~ -

" s =10000 _
400+ -
- 5000 -~
200~ ]

h 2000

s

W

£

E oo 1000 .

g *r 500 _

b}

© 60 —

g i _

w

& a0} -

u . _
20~ —
- .
o | | ) i L ] !
90 &0 30 0
a

F1G. 9. Pressure drop parameter E variation against angle « for various values of the Rayleigh
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in the upwards direction. This study shows that
for all the three ducts, the flow reversal occurs
when the Rayleigh number is in the range of
10 000. The duct angle « has only a minor effect
on the flow reversal,

CONCLUSIONS

Combined free and forced convection through
vertical non-circular ducts has been analysed
by a variational solution. Three geometries
have been treated (i) right-angled triangle
(ii) isosceles triangle and (iii) rhombic duct. For
particular cases the results of the present analysis
agreed with those of the published literature,

The Nusselt number variation with the character-
istic duct angle depends upon the value of the
Rayleigh number. The pressure drop parameter
for all the ducts becomes independent of the
angle a at higher Rayleigh numbers.
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APPENDIX A
The Finite-Difference Approximation

A finite-difference procedure is described
below. Although the general method is applicable
to all the three geometries, details are given for
the rhombic duct only.

From Fig. 10, because of symmetry, we need
only to solve for W and T in one quadrant (say
the 1st quadrant). The conditions to be applied

Fic. 10. Rectangular grid system for finite-difference
procedure.

on the horizontal and vertical boundaries are
that

W _oT _,
on  on

where n is the normal to the appropriate edge.
In order to avoid the problem of interpolation
at the sloping boundary, a rectangular grid was
used such that the horizontal step size

X 1

h=N=3Nem a2

(A1)
where N is the number of intervals along the
X or Y axis.

The vertical step size

Y 1
k= N = 2N sino2 = htano/2. (A.2)
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and
W/i,j = W(Xi7 }Ga

Then the standard 5-point approximation of
the Laplacian at the point i, j, is

7;,1; = T(Xb Y;

1
VZTi,j =h“2{7;'+1,,- + Tioy,j— 2Ti,j}

+ h—z?anl—zﬁ{ﬂ,jﬂ + T -0 — 27},,}. (A.3)
Let
S$;;T=Ty,;+ Ty ;
+ {51%;/5(7;,;41 + T j-1h

and let w be the over-relaxation constant,
then equations (7) and (8) become

_ w
~ 2(1 + 1/tan a/s)
+ Si,jT} +(1 — w) VVi,j,

Wi {FP(NrW, ; + E)

(A4

53]

- 2 _ 2 .
T30 T pan a2 {h*(F — W, ) + S,,;T}

+(1-w)T,; (A5
Now the algorithm proceeds as follows.

An initial distribution of W and T is assumed,
as is a value of E. Then new values of W and T
are calculated at each interior point of the grid
using equations (A4) and (AS). (The points on
the horizontal and vertical boundaries are
calculated in a different manner which will be
described shortly.)

Then W and T are re-calculated until on
two consecutive iterations, the difference be-
tween the new and the old value of both W and
T at every point differ in absolute value by not
more than ¢ (usually ¢ ~ 107%).

Once the shape of W and T has “settled”,
the continuity equation (9) has to be checked.
If it does not hold, then E has to be modified.
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Thus define

f(E) = deXdY 1

sin o

(A'6)
A

and E must be chosen so that f(E) = 0. A better
value of E was determined using Newton’s
method for finding a zero of a non-linear
equation, namely

SE—y)
fE-,)

where [ represents the iteration number.

Aftér a new E is determined, W and T had
to be “re-settled” as described above.

Still to be discussed is how the values are
calculated for both W and T (on every iteration)
along the horizontal and vertical boundaries.
Using the forward-difference approximation
for the derivative of a function at a point, one
obtains

T;,j = %(47"2,1- - Ts,j),

El = El—l -

ji=12,..N-2

for the points along the vertical boundary.
Similar equations hold for T along the horizontal
boundary and W along both the vertical and
horizontal boundaries. The formula for the
functions at the points (1, 1), (N, 1) and (1, N)
have still to be given. It turns out that they are
not needed during the “settling” of W and T
and so need to be calculated only when E is
being calculated. A simple average of the value
of the function at the two nearest neighbours
is used.

Comments

The practical problem of choosing an appro-
priate step size h, an over-relaxation constant
o and the initial distribution of W and T
remains to be discussed.

It was found that 50 intervals (N = 50) was
about the minimum number required to guaran-
tee an accurate shape for W and T. However,
if the initial distribution of W and T were
made zero, the number of iterations required
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to “settle” the shape of W and T was prohibi-
tive. Thus a value of N = 20 was first used to
obtain a rough shape which was used as the
initial distribution for the N = 50 case. A
number of values of w were tried, but w = 1-8
seemed to be about the best.

With any value of w between 1-0 and 19,
the shape of the functions W and T were found
to oscillate (as a function of the number of
iterations). It was observed that when W was
at an extremum, T had about the right (final)
shape and vice versa. This fact was used to
speed up convergence by saving the values of
W when T was at an extremum, then when W
was at an extremum, it was replaced by the
previous saved values. This reduced the time
for convergence by about a factor of 4. However,
there still remains room for improvement in
the methods used to further speed up conver-
gence.

Table 1 presents sample values of the Nusselt
number evaluated by the finite-difference
method. In the same table, results of the varia-
tional formulation are also given for the sake of
comparison.

APPENDIX B

In this Appendix, an exact solution of forced
convection through a rhombic duct is presented.

For the case of pure forced convection
{Ngs = 0) and for F = 0 equations (7) and (8)
reduce to

ViW = — E, (B.1)
ViT — W = 0. (B.2)
These combine into
V*T = —E. (B.3)
The boundary conditions for this case are
W=T=0,
which are equivalent to
T=ViT=0 {B.4)

at the boundary.

M. IQBAL, B. D. AGGARWALA and A. G. FOWLER

The problem posed by equations (B3) and
(B4) is easily seen to be equivalent to the problem
of deflection of a simply supported plate. Since
the solution to this latter problem is available
in the literature [17] for a parallelogram, we
simply write down the expressions for velocity
and temperature for the rhombic duct.

W = % [ZZ - ”lziz ‘!’pwp%“rlcn
i1

- lzii '1’p'/’p+nzn - Az 29: wrzx]*’ (B‘S)

and

— 4
T — ‘? [2272/414

[

1
4

~[18
-8

zj 2.: '/’r'l’sv/pl,l[/,,()'l”'s"l"ﬂl ei(r+5—p_")¢
x© © © © r

_< el
T T - -

Cr-le’s + C'C>

|
DD HIELIN

w gttrslgittr=si¢ 4 .. C) - ZZ (E d"zx)/lz
T

+ O G }:i bl e“""”‘")], (B.6)
1 1

Here the rthombus in { (= X + iY) plane has
been mapped onto a unit circle in the {(=0e'?)
plane, 4 and ¥’s are co-efficients of mapping,

Z=23 Wl

is the mapping. Bar over a quantity and the
letters c.c. denote “‘complex conjugate”.

* Number of symbols required makes a certain amount
of overlap in nomenclature unavoidable,
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To compare the results obtained from (BS) methods, in Table 2. This table shows that the
and (B6) with the result obtained by the varia- agreement between these two methods is very
tional solution we present the values of W and good.

T at the center of the duct by these two different

Résumé—On étudie la convection mixte (naturelle et forcée) laminaire entiérement établie & travers des
tuyaux verticaux a sections non-circulaires. Les géométries examinées sont les tuyaux dont la section est
(i) un triangle rectangulaire, (ii) un triangle isocéle, et (iii) un losange.

On suppose soit que le flux de chaleur axial est uniforme soit que la température pariétale est uniforme
le long du périmeétre. Toutes les propriétés du fluide sont supposées constantes, sauf pour la variation de la
masse volumique dans les termes de flottaison. Les solutions approchées du probléme ont été obtenues par
(i) le calcul des variations, (ii) le processus de differences finies.

Pour le tuyau losangique, on présente aussi une solution exacte pour la convection uniquement forcée.
Pour le triangle rectangulaire, et pour Ng, = 0, la valeur maximale du nombre de Nusselt est obtenue
lorsque o = 45°, tandis que, lorsque N, = 1000, sa valeur minimale est obtenue lorsque a = 45°. Pour
le triangle isocéle, le nombre de Nusselt devient insensible également & P'angle du tuyau lorsque la valeur
du nombre de Rayleigh augmente de zéro a environ deux mille. Lorsque le nombre de Rayleigh est encore
augmenté jusqu’a dix mille, ’angle du tuyau devient de nouveau important. Pour le triangle isocéle, et
pour Ng, = 0, la valeur maximale du nombre de Nusselt est obtenue pour a = 60°, tandis que, pour

Ny, = 10000, sa valeur maximale se présente pour ¢ = 60°. Pour le tuyau losangique, I’effet de ’angle
du tuyau diminue lorsque la valeur du nombre de Rayleigh augmente a partir de zéro.

Zusammenfassung—Es wird eine vollausgebildete, laminare Strémung in senkrechten, nicht kreisformigen
Rohren behandelt, die durch kombinierte freie und erzwungene Konvektion bewirkt wird. Die behandelten
Rohrquerschnitte sind: (i) rechtwinkeliges Dreieck, (ii) gleichschenkeliges Dreieck und (iii) Raute.
Konstanter axialer Wirmefluss und am Umfang konstante Wandtemperatur werden angenommen.
Alle Eigenschaften des Stromungsmediums werden als konstant betrachtet, mit Ausnahme verinderlicher
Dichte in den Auftriebsgliedern Néherungslosungen des Problems werden durch Variationsrechnungen
und mit Differenzenverfahren erhalten. Fiir rautenférmige Rohrquerschnitte wird bei rein erzwungener
Konvektion auch eine exakte Losung angegeben.

Fiir rechtwinklige Dreiecke hat der Rohrwinkel « keinen Einfluss auf die Nusselt-Zahl Nu, solange der
Wert der Rayleigh—Zahl von 0 bis etwa 2000 ansteigt. Wird die Rayleigh-Zahl weiter erhoht, bis etwa 10000,
so wichst der Einfluss des Rohrwinkels wieder. Fiir rechtwinkelige Dreiecke wird fiir Nz, = 0 der grosste
Wert der Nusselt-Zahl bei a = 45° erreicht, wihrend sie fiir Nz, = 10000 ihren niedrigsten Wert bei
a = 45° hat. Fir gleichschenkelige Dreiecke hat der Rohrwinkel ebenfalls keinen Einfluss auf die Nusselt—
Zahl, wenn der Wert der Rayleigh-Zah! von 0 bis etwa 2000 steigt. Wird die Rayleigh-Zahl weiter erhéht,
bis 10000, so erhoht sich der Einfluss des Rohrwinkels wieder. Fiir gleichschenkelige Dreiecke erhilt
man bei Ny, = 0 den grossten Wert der Nusselt-Zahl fiir « = 60°, wihrend fiir N, = 10000 ihr grésster
Wert bei o = 90° liegt.

Fir rautenférmige Rohrquerschnitte verschwindet der Einfluss des Rohrwinkels, wenn der Wert der

Rayleigh-Zahl von Null ausgehend ansteigt.

Annoranna—IIpoBefeHO HMCCTEIOBAHUE MOJHOCTLIO PABBUTOTO JAMHHAPHOTO TEYCHUS MpH
COBMECTHON CBOGOAHON ¥ BHHYMICHHONH KOHBEKIMM B BepPTMKAIBHOM KAaHANE HEKPYIIOro
cevenns. PaccMaTPHBAIOTCA KAaHAJIBL CAeRyoIIelf TeOMETPHH ONEPEYHOrO CEYeHHS | IPAMO-
YTOJILHHM TPEYTONBHME, paBHOGeApeHHHI Tpeyrombumk, poMG. Ilpennomaraerca maoTep-
MUYHOCTb CTEHOK U ORHOPOJHOCTb OCEBOTO TEIIOBOT0 NOTOKA. Bce CBONCTBA KUIKOCTH
CYMTAIOTCA TMOCTOAHHEIMU 33 UCKIIOYEHUEM ILTOTHOCTH B YIeHAX NOXbeMHOK cuawl, Ilpu-
GumKeHHEe PelIeHNA MOTYYeHRl ¢ NOMONbIO (a) ONEPALMOHHOTO MCYMCHeHHA U (G) MeTomoM
KOHeYHBIX pasHocTedt. A ciy4asm TOJNBKO BHIHYMNCHHOW KOHBEKUMH B DPOMOGHMYECKHX
KaHaJaX MOJYYeHO TaKMe TOYHOE peiteHue. 1A IPAMOYrOJNLHOIO TPEYTONBHMKA YHCIO
Hyccenbra (Ny.) He saBucut ot yria kauamua (o), Torga kax wucao Pemes (N Ra) TOBHIIAETCA
or 0 xo 2000. Ilpn pamvuetmem yBenuuennnu uncad Pesesn, ckamenm, fo 10000, yrox xanaza
ONATh HAYUHAET OKA3HBATH BIUAHUE. [[1A NPAMOYTOJBHOrO TPeYroabHUKA NPU Nge = 0
MAaKCMMAJIbHOE 3HaYeHNe uncaa Hyccenbra momyyaercs npu a = 45°. Jlaa paBHOGeApeHHOTO
Tpeyrodbhuka 9ucao Hyccenbra onATh HepecTaeT 3aBUCETH OT yrila KAHAJA NPH yBeIHYCHAN
unciaa Pexes or 0 mo 2000. Ilpn manbueidmem pocre uucma Pexesa go 10000 yroa kaxaza
ONATH CTAHOBUTCA BXHHIM (arropom. s paBHOOeIPEHHOr0 TpeyrodbHMKA pu N, = 0
MAKCHMAlbHOE 3HaveHMe uucaa Hyccenbra momydeno mpu o = 60°, Torma kak npm
Nra = 10000 ero makcumanbHOe BHAYEHME COOTBETCTBYeT a = 90°. JlnA pomGuvYecKux
KaHaJIOB BJIUAHME YIJiIa yMeHbIIaeTcA npu Ngr, > 0.



