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Abstract-Fully developed laminar combined free and forced convection through vertical non-circular 
ducts is studied. Geometries treated are (i) right-angled triangle, (ii) isosceles triangle and (iii) rhombic 
ducts. Uniform axial heat flux and uniform peripheral wall temperature are assumed. All fluid properties 
are considered constant except for variation of density in the buoyancy terms. Approximate solutions of 
the problem have been obtained by (i) variational calculus and (ii) finite-difference procedure. For rhombic 
duct an exact solution for pure forced convection is also presented. For the right-angled triangle the 
Nusselt number (NN,,) becomes insensitive to the duct angle (a) as the value of the Rayleigh number (NR,J 
is increased from zero to about two thousand. As the Rayleigb number is further increased to say ten 
thousand, the duct angle again becomes important. For the right-angled triangle, at N,, = 0 the maximum 
value of the Nusselt number is obtained when a = 45”, while when N,, = 10000 its minimum value is 
obtained at a = 45”. For the isosceles triangle, the Nusselt number also becomes insensitive to the duct 
angle as the vaIue of the Rayleigh number is increased from zero to about two thousand. As the Rayleigh 
number is further increased, to ten thousand, the duct angle again becomes important. For the isoceles 
triangle, at NR. = 0, maximum value of the Nusselt number is obtained at a = 60” while at N,, = 10000, 
its maximum value occurs when a + 90”. For the rhombic duct the effect of the duct anale diminishes as 

the value of the Rayleigh number is increased from zero. 
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NOMENCLATURE 

area of cross-section ; 
coefficients in the assumed velocity 
profiles ; 
characteristic lengths of a duct ; 
coefficients in the assumed tempera- 
ture profiles ; 
specific heat of the fluid at constant 
pressure ; 
a constant ; 
temperature gradient in flow direction ; 
hydraulic diameter ; 
pressure drop parameter, dimensionless 

- p:(: + P&#PWA 

heat generation parameter, dimension- 
less, Q/pC,C, Wi ; 

t Department of Mechanical Engineering. 
$ Computing Centre. 

gravitational acceleration ; 
average peripheral heat transfer co- 
efficient ; 
tan a for triangular ducts and tan a/2 
for rhombic duct ; 
Nusselt number, dimensionless, hD,,/k ; 
Rayleigh number, dimensionless, 

(p2sCrWD:W~; 
heat generation rate ; 
average surface heat flux ; 
temperature of the fluid ; 
axial velocity ; 
mean axial velocity ; 
dimensionless axial velocity, w/W, ; 
respectively, dimensionless coordin- 
ates, xl&, YIQ, ; 

0 - L); 

dimensionless temperature, 

1123 
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characteristic angle of the duct ; 

fluid properties in standard notation. 

INTRODUCTION 

THE STUDY of combined free and forced con- 
vection in ducts is of particular importance in 
nuclear power plants, heat exchangers, and many 
other industrial heat transfer applications. In 
flow through vertical ducts and channels, 
many of the combined free and forced convection 
applications approximate to the case of linearly 
varying wall temperature boundary conditions. 
A number of theoretical and experimental 
investigations are available in this area. Experi- 
mental study of laminar flow combined free 
and forced convection in vertical circular tubes 
under uniform heat flux has been reported by 
Brown [l] Hallman [2], Kemeny and Somers [3] 
among others. Ostroumov [4], Hallman [5], 
and Morton [6] have presented theoretical 
studies of the same problem of flow through 
vertical circular tubes. Ostrach [7] analysed 
combined free and forced convection of heat 
generating flows in vertical channels with 
linearly varying wall temperature. 

In laminar combined free and forced con- 
vection in vertical circular tubes, the tempera- 
ture as well as the temperature gradient along 
circumference remain constant at any tube 
section. However, in non-circular tubes, the 
flow is retarded at the corners, thereby carrying 
away less amount of heat, and increasing the 
wall temperature in the corners. The extent of 
rotational asymmetry depends upon the shape 
of a duct. Under certain circumstances when 
the wall is sufficiently thick and its thermal 
conductivity is sufficiently high, the inner 
peripheral wall temperature may, however, tend 
to be uniform. In the fully developed region 
the wall temperature can remain linearly varying 
in the flow direction, as long as the fluid 
properties remain constant, except for variation 
of density in the buoyancy terms, however. 

Analytical solutions of flow and heat transfer 
through noncircular tubes of certain geometries 

can be borrowed from the results of mathematic- 
ally analogous differential equations of plate 
theory. This has been shown by a number of 
authors, for instance [8]-[lo] among others. 

Han [ 111, has analysed combined free and 
forced convection heat transfer in vertical 
rectangular tubes by Fourier series analyses. 
Tao [ 121, [ 131 suggests a method of solving such 
problems by introducing a complex function 
whose real and imaginary parts are directly 
related to velocity and temperature fields. By 
combining the momentum and energy equations, 
Helmholtz’ wave equation in the complex 
domain is obtained. This equation is then solved 
in terms of Bessel and associated functions. 
Agrawal [ 141 utilized Tao’s inhomogeneous 
Helmholtz’ wave equation in complex domain 
and converted it into an equivalent variational 
integral. The resulting variational integral was 
solved by assuming a suitable polynomial for 
the temperature function. 

In this report laminar combined free and 
forced convection heat transfer in vertical ducts 
of three shapes ; has been studied; (i) right- 
angled triangular, (ii) isosceles triangular, and 
(iii) rhombic ducts. Of particular importance 
is the determination of duct angle which 
produces maximum value of the Nusselt number, 
in a manner similar to pure forced convection 
through triangular ducts [15], [16]. A varia- 
tional formulation of the problem has been 
obtained and solved without recourse to com- 
plex functions. Results have also been compared 
with a finite-difference solution, for one of the 
geometries. An exact solution of pure forcedcon- 
vection through a rhombic duct is also appended. 

STATEMENT OF THE PROBLEM 
AND ASSUMPTIONS 

Consider fully developedlaminar flow through 
a straight vertical duct of arbitrary shape as 
shown in Fig. l(a). The flow is in the vertical 
upwards direction along the positive z-axis. 
Temperature is assumed to vary linearly in the 
flow direction. The heat flux in the transverse 
direction is assumed to vary in such a manner 
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Under the above conditions, the momentum 
and energy equations can be written as 

/Jv2w = $ + pg, (1) 

kV2t = pcpw $ - Q, (2) 

where 

V?~~+~ (3) 

that the wall temperature becomes rotationally 
symmetric. Viscous dissipation, pressure and 
axial conduction terms in the energy equation 
are ignored. The fluid may contain uniform 
volume heat sources. All fluid properties are 
assumed constant except for variation of the 
density in the buoyancy term of the momentum 
equation. 

The density is assumed to vary linearly with 
temperature and can be expressed by the 
relation, 

P = Pw[l - (t - rw) 81, (4) 

where fi is the coefficient of thermal expansion 
of the fluid, and the subscript W refers to the 
wall conditions. The wall temperature is given 
by the relation, 

at 
tw = to + zx$ (5) 

where t, is the reference temperature at z = 0 
and at/i?z is the constant temperature gradient 
in the axial flow direction. When equation (4) is 
inserted in (l), the resultant expression can be 
written as 

,L@w = 
( > 

z+Pfi - PwBS@ (6) 

where the temperature difference function 13 
is defined as, 

e=t-tt,. 
The expressions (1) and (2) can now be 

written in a dimensionless form as, 

V:W + N,,T= -E, 

V:T - W = -F, 

where 

(7) 

(8) 

V+L+ a2 
ax2 a7 

In (7) and (8), N,, and F are prescribed para- 
meters, W and T are dependent variables while 
E is an unknown constant. We therefore require 
an additional equation which is provided by 
the continuity considerations 

jj WdA = JjdA. (9) 

The boundary condition at the walls in equations 
(7), (8) is 

T=W=O. (10) 

An exact analytical solution of equations (7)- 
(10) for the three geometries (i) right-angled 
triangle, (ii) isosceles triangle and (iii) rhombic 
ducts of arbitary angles appears to be very 
difficult. In the following sections we present 
a variational formulation of the problem, while 
the finite-difference procedure is given in 
Appendix A. Also an exact solution of pure 
forced convection for the rhombic duct is 
presented in Appendix B. 

VARIATIONAL FO RMULATION AND SOLUTION 

Consider the expression 

I= jj&X, Y,J B,fx, Bx,SP 8,) dxdy, (11) 

where F is a given function of the variables 
X, Y, J; B,& &,f, and &,. The variables f and # 
are supposed to be functions of X and Y; also 
f, = as/ax etc. The integration is performed 
over the area of the duct. 

For given F, we obtain different values of I 
by substituting different functions f and g in 
the right hand side of (11). We are interested 
only in those functions which vanish on the 
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boundary of the duct and are differentiable 
sufficient number of times inside the rhombus. 
We call such functions “admissible”. 

Let us assume that there is a pair of admissible 
functions W and 7’ say, which make I stationary. 
Now we investigate the value of I in “the 
neighbourhood” off = W, S = T. We substi- 
tute f = W + ei w, gj = T + ~i;li where .sl and 
sZ are “small”’ real constants and w and T 
are any two admissible functions. For given 
wand T we should have 

Since (17) must hold for all admissible functions 
TV, we must have 

inside the duct. Similarly, we obtain. 

inside the duct. While on the boundary of the 
duct we will have the condition, W = T = 0. 

We are interested in solving equations (7), 
(8) which are rewritten here as, 

The equation (11) now becomes and 

By applying the conditions 
(13), we obtain, 

8Z C-J a.5 2 El=&*=0 

F = -N,,TW - EW + $W; + $W; 

+ G(X Y, T, T,, I;.>, (24) 

= _I( - $T+gc+gT, dXdY=O. 
-1 

where G(X, Y, T, T, T,) is the “constant” of 
x Y 

(16) 
integration. 

where @/t?W denotes #/faf calculated at the 
From (24) we obtain, 

“point” (X, Y, W, T, W,, T,, WY, ?;). aF aG 

Applying Green’s theorem to equation (15), aT= -N,,W + alp (25) 

we obtain, aF aG, aF ac 

~~~[~-~(~)-~(~)]dXdY 
aT,=e aT,=7;. (26) 

d = . (17) We see from (25) that if we want (19) to coincide 

(14) 

of equations (12), 
Comparing (18) with (20) we obtain, 

aF 
aw= - N,,T - E, 

-f!.-=w and _!!_=w 
awx x awy ye 

Therefore 

(22) 

(23) 
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with (21), we should write (21) in the form 

- NR,W + N,,F = 0. 

Comparing (21a) with (19) we obtain, 

aF 
aT= -NRpW + NRpF, 

aF aG 

aT,- - -N,G’i = aT,’ 

EC_, T aG 
aT, Ra ‘=d?;. 

Comparing (27) with (25), we obtain 

%, F 
aT Ib’ 

(214 

(27) 

(2) 

(29) 

(30) 

From (28)-(30) we obtain, 

G = N&T - p(T: + T;) + H(X, Y) (31) 

where ZZ(X, Y) is the “constant” of integration. 
Combining (31) and (24), we obtain, 

F=#w:+w;)-NR” -+ + T;) - N,,TW 

+ N,,FT - EW + H(X, Y). (32) 

It is clear from (11) that the presence of H(X, Y) 
in (31) only adds a constant to Z and has no 
effect on its being stationary under the con- 
dition of equation (12). Disregarding H(X, Y) 
we finally obtain, 

Z = sj( W: + W;) dXdY - N,&(T: + T;) 

x dXdY - 2N,&TWdXdY + 2N,,F 

x jjTdXdY - 2EjjWdXdY. (33) 

Admissible functions W and T which make Z 
stationary are the solutions to our boundary 
value problem. We now solve the problem for 
each of the three geometries. 

COMXJTATIONAL PROCEDURE FOR 
VARIATIONAL METHOD 

(i) Right angled triangular duct 
Coordinate system for a right angled tri- 

angular duct is shown in Fig. l(b). Our first 
point of interest is to find approximate ex- 
pressions for functions W and T. We assume 
velocity and temperature expressions as 

w =fb.(Ao + A,X + A,Y + A,X2 

+A,XY-tA,Y2+...) (34) 

T =fb.(Bo + B,X + B,Y + B,X2 

+ B,XY + B,Y2 + . . .) (35) 

where fb = 0 is the equation of the boundary, 
and it ensures W = T = 0 at the wall. To 
simplify the equation of boundary and the 
resulting calculations, we may take b = 1 [see 
Fig. l(b)]. However, since (7) and (8) have been 
nondimensional&d by the hydraulic diameter, 
D,,, therefore the final results will require 
adjustment by the factor b/D,,. The equation 
of the boundary can now be written as 

fb = XY(Y + mx - 1). (36) 

The expressions (34), (35) were limited to 
six arbitrary coefficients each for numerical 
computations. The accuracy of results has been 
examined with respect to lesser number of 
coefficients and their effect is described under 
Discussion. Restricting (34), (35) in this manner, 
and substituting in (33) we get 

Z = I(&, Al, AZ, . . . A,, B,, B,, B, . . . B,, E). 

(37) 

We now minimize Z with respect to A’s and 
B’s. This gives i2 equations 

az 
--c&=0, i=O,I2 5 
aAi aBi 

) )... . (38) 

Since E is also unknown, we need another 
equation. This equation is obtained from the 
continuity consideration, 

Ji WdXdY = JJdXdY. (39) 
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Solution of the thirteen equations (38), (39) 
completes the solution of the problem. 

(ii) Isosceles triangular duct 
Coordinate system for this shape is shown 

in Fig. l(c). The velocity and temperature 
profiles for this case will be symmetric about 
x-axis but not about y-axis. We have assumed 
the expression for velocity and temperature as, 

w =fb*(& + A,Y + &X2 + P&Y2 

+ A,X2Y + A,Y3), (4) 

T =fh-(I$, + BIY + B2X2 + B3Y2 

+ B,X2Y + B,Y3). (41) 

In a similar fashion to the previous case, the 
equation of the boundary for this shape is 

fb = Y(Y - mx - l)(Y + mx - 1). (42) 

where ~~ndicul~ of the triangle is taken as 
unity. Determination of the coefficients A, 8; 
and the pressure drop parameter E requires 
the same procedure as outlined for case (i). 

(iii) Rhombic duct 
Coordinate system for the rhombic duct is 

given in Fig. l(d). In view of symmetry of this 
duct about the coordinate axis, we write the 
approximate expressions for W and T as, 

w =f&‘(Ao + A,X2 + A2Y2 + ‘43X4 

+ A5X2Y2), (431 

T = fb.(Bo + &X2 + B2Y2 + B3X4 

i- B4Y4 + B,X2Y2). (4) 

By taking half of the vertical axis of the rhombus 
equal to unity, the equation of the boundary 
can be written as 

fb = (Y + mX - l)(Y - mX - 1) 

x(Y+mX+l)(Y-mX+l). (45) 

The coefficients Ai* Bi and the parameter E 
are determined in a similar manner as before. 

The method described above can be applied 
to a duct with any number of sides. However, 
equation (45) indicates that as the number of 
sides are increased, the equation of the boundary 
increases correspondingly and hence the cal- 
culations become very lengthy. 

Nusseft number 
Having obtained the velocity and tem~rature 

functions, the evaluation of Nusselt number is 
straight forward. 

N =hD”=D, ‘I +F Nil k k G = T,, ’ (46) 

ty 

cs) i___L._. x (0) 

tu 
i 

--X (bf 

ty 

&_-x (C) 

!=--“--I 

--e-x (,j) 

FIG. 1. Coordinate system. 
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a 

FIG. 2. Nusselt number variation against angle a for various values of the Rayleigh number NRa. 
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FIG. 3. Nusselt number variation against angle a for various values of the Rayliegh number NR.. 



1130 M. IQBAL, B. D. AGGARWALA and A. G. FOWLER 

where T,, is the bulk temperature difference solution presented by Han [ 111. For pure 
and is given by, forced convection, the present analysis gives 

f TWdA 
Nusselt number of 3-6069 against 3.61 given by 

T,, = A 
Han. 

1 
WdA ’ (47) 

30 

and S is a factor that depends upon duct 
20 

geometry. 
This completes evaluation of the Nusselt g 

Number. 
3 

: 
3 

2 

DISCUSSIONS 

5. Nusselt number variation against Rayleigh number 
N,, for various values of the angle a. 

We would like first of all to examine the 
accuracy of the v~ation~ results with the 
results available in the literature wherever FIG 

it is possible. For pure forced convection through 
triangular ducts, cases (i) and (ii), the present 
results given in Figs. 2 and 3 agree with those The comparisons given above are based 
of fl5] and [16]. For the rhombic duct, at on six coefficients in the expressions for W 
01 = 90”, when it assumes the shape of a square, and T for each of the three ~onfig~ations. It 
the present results for combined free and forced was desired to study the manner in which the 
convection, Figs. 4, 5, agree with the exact results are affected by eliminating some of the 

20. 
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FIG. 4. Nusselt number variation against angle a for various values of the Rayleigh number N,,. 
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coefficients in the said expressions. For the 
right angled triangle, the elimination of XY 
from (34) and (35) appears to affect the Nusselt 
number by about five per cent. For the isosceles 
triangle, elimination of even two terms, con- 
taining X2Y and Y3 in (40) and (41) affects the 
Nusselt number by less than five per cent. Still 
better results are obtained for the rhombic 
duct. Elimination of two terms containing X4 
and Y4 from (43) and (44) affects the values of 
the Nusselt number by less than three per cent. 
It might be added that the effect on Nusselt 
number by dropping a term in the expressions 
for W and T, depends in addition, on the value 
of the angle a and the value of Rayleigh number 
for a particular duct. For instance, for triangular 
ducts, this effect of dropping a term is relatively 

smaller when a is in the neighbourhood of 45” 
than when it is in the neighbourhood of 85” or 
5”. For rhombic duct, the effect of elimination of 
two or three coefficients is almost nil at a = 90”. 
It was also noted that while solving equations 
of the type (38) and (39), the resulting matrices 
are found to be highly unstable at small values of 
a. For this reason, in Figs. 24 the Nusselt 
number values are not given for extreme values 
of a. Also, in general it was found necessary 
to use double precision in machine calculations, 
particularly while evaluating the area integrals. 

A direct finite-difference solution of equations 
(8HlO) was also obtained, primarily to see 
whether it takes more or less machine time to 
compute the Nusselt numbers when compared 
to that of the variational solution. Some 

Table 1. Comparison of Nusselt numbers obtained from the finite-&@rence 
solutions (Appendix A) with those from the variational solutions, for rhombic 

duct 

Nusselt number 

a0 
N,, = 0 N,, = 10,000 

Finite- Variational Finite- Variational 
difference method difference method 

method method 

90 3.61 3.6069 8.3213 8.3136 
SO 3.5659 35794 8.3192 8.3 143 
70 3.4884 3.4982 8.3121 8.3159 
60 3.3650 3.3665 8.2999 8.3176 
50 3.1867 3.1900 8.2845 8.3191 
40 2.9692 2.9778 8.2669 8.3210 
30 2.7182 2.7465 8.2498 8.3240 
20 2.4514 2.5259 8.2354 8.3279 

Table 2. Comparison of velocity and temperature at the centre of rhombic duct aS obtained for pure forced convection from 
Appendix B with thosefrom the variational solution 

a’ 90 81 72 63 54 45 

Appendix B method 0.07368 
Variational method 0.07385 

Appendix B method 0.004063 
Variational method 0004062 

( W sin’ a)/E 
0.07223 0.06793 0.06109 0.05215 0.04166 
0.07239 0.068 11 0.06126 0.05224 OG4165 

o . oo3906( 
- T sin4 W 

0.003461 OQO2806 @CO2054 0001319 
0~003905 0.003462 0.002807 OGO2049 O-001309 
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details of this solution are given in Appendix A. 
It was observed that the finite-difference solution 
takes about two hundred times more machine 
time for every single value of Nusselt number 
compared to that of the variational solution. 
Some numerical values of Nusselt numbers 
obtained by the finite-difference solution for 
the rhombic duct were compared with those of 
the variational results and are given in Table 1. 
This table presents the values of Nusselt number 
at two extreme values of the Rayleigh number, 
N Rol = 0 and 10000. As the agreement of the 
results obtained by these two methods was good 
and the machine time of the finite difference 
method was very long, no further attempt was 
made to compute Nusselt numbers by the hnite- 
difference solution for other geometries. An 
attempt was also made to compare the variational 
results with any published exact solution for 
any of the three geometries. In [17], an exact 
solution is given for bending of a pa~llelogram 
plate. The results of analysis in [17] can be 
directly utilized for the case of pure forced 
convection through a rhombic duct. These 
results are given briefly in Appendix B. A 
comparison of the numerical values of velocity 
and temperature at the duct centre as obtained 
by the exact solution of [17] and the present 
variational formulation is given in Table 2. 
This table shows that the results of the varia- 
tional formulation are indeed very accurate. 

We now discuss the general behaviour of the 
Nusselt number with the variation of 01 for 
the three geometries considered. Figure 2 
presents the plots of Nusselt number against c1 
for various values of Rayleigh number for the 
right-angled triangIe. The Nusselt number values 
are symmetric about a = 45”. At N,, = 0, (in 
the present analysis meaning pure forced con- 
vection) maximum value of Nusselt number 
occurs at a = 4.5”. As the value of N,, is in- 
creased from zero, the Nusselt number becomes 
relatively independent of a. This trend continues 
until Rayleigh number is in the neighbourhood 
of about 2000. As the value of Rayleigh number 
is increased still further, say to 5000 and higher, 

it appears that the situation is reversed and now 
minimum value of Nusselt number occurs at 
a = 45”. 

For the isosceles triangle, Fig. 3 presents the 
plots of Nusselt number against a for various 
values of the Rayleigh number. At N,, = 0, the 
maximum value of the Nusselt number is 
obtained at a = 60”. As the value of Rayleigh 
number is increased to the neighbourhood of 
2000 the curves flatten out and the Nusselt 
number becomes relatively insensitive to the 
variations of a. As the Rayleigh number is 
increased still further to 5000 and higher values, 
maximum value of Nusselt number is obtained 
at a --, 90”. For this particular geometry, for 
N,, > 5000, for some unknown reasons a 
local maxima of Nusselt number appears to 
occur at 45”. 

Figure 4 presents plots of Nusselt number 
against a for rhombic duct. For this geometry, 
at N,, = 0, the maximum value of Nusselt 
number occurs at CI = 90”. As the value of a 

is reduced, the Nusselt number decreases 
accordingly. As value of the Rayleigh number is 
increased, the Nusselt number becomes in- 
sensitive to the variations in a. This trend con- 
tinues to the maximum value of the Rayleigh 
number investigated in this analysis. 

Figure 5 shows plots of Nusselt number 
against Rayleigh number for various values of 
tl for the rhombic duct. This plot also shows that 
as the Rayleigh number value is increased, the 
differences between the Nusselt numbers for 
various values of the included angle a diminishes 
for this geometry. 

Hydraulic diameter is almost invariable used 
as a characteristic length dimension evaluating 
the Nusselt number. For turbulent flow through 
non-circular ducts, hydraulic diameter is known 
to correlate the pressure drop and heat transfer 
phenomena. In laminar flow through non- 
circular ducts, hydraulicdiameter is not suflicient 
to remove the dependence of the heat transfer 
results upon geometric parameters. As such, 
for one of the geometries, we have also computed 
the Nusselt numbers based on a length dimen- 
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FIG. 6. Nusselt number NNu = Zah/k based on the major axis. 
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FIG. 7. Pressure drop parameter E variation against angle OL for various values of the 
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sion other than the hydraulic diameter. The case The plots for pressure drop parameter E 
treated is that of rhombus where the Nusselt are given in Fig. 7-9. All the three plots indicate 
number is based on the major axis, 2~. These that as the value of Rayleigh number is increased 
plots of Nusselt number based on 2a are pre- from zero, the pressure drop parameter becomes 
sented in Fig. 6. This figure shows that the insensitive to the variations in c(. In addition, 
geometric factors involved in the selection of a the values of the pressure drop parameter are 
characteristic length dimension may show a about the same for all the three ducts, under the 
completely different trend for Nusselt number same value of the Rayleigh number. 
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FIG. 8. Pressure drop parameter E variation against angle a for various values of the 
Rayleigh number N,, 

based on hydraulic diameter (Fig. 4) when 
compared to the Nusselt numbers based on 
2a (Fig. 6). The remarks made above are purely 
to illustrate a fact that the Nusselt number 
values and the manner in which they will vary 
with a will depend also on the characteristic 
length dimension employed in the Nusselt 
number itself. A similar observation has been 
reported by Sparrow et al. ([18], Fig. 3), for 
instance. 

Velocity and temperature profiles were ex- 
amined. Of particular interest was the behaviour 
of the velocity profiles with variations of the 
free convection effects and the duct angle. It is 
known that for heating in upflow, the lower 
density fluid near the walls accelerates upwards. 
To satisfy continuity, the flow slows down at the 
duct ‘centre’. If the buoyancy effects are large 
enough, it is possible to obtain flow reversal 
at the duct centre, while the net flow remains 
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FIG. 9. Pressure drop parameter E variation against angle a for various values of the Rayleigh 
number N,, 

in the upwards direction. This study shows that ~eNusseltnumberva~ation~ththecharacter- 
for all the three ducts, the flow reversal occurs istic duct angle depends upon the value of the 
when the Rayleigh number is in the range of Rayleigh number. The pressure drop parameter 
10 000. The duct angle a has only a minor effect for all the ducts becomes independent of the 
on the flow reversal. angle a at higher Rayleigh numbers. 
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APPENDIX A 

The Finite-Dijfeerence Approximation 

A finite-difference procedure is described 
below. Although the general method is applicable 
to all the three geometries, details are given for 
the rhombic duct only. 

From Fig. 10, because of symmetry, we need 
only to solve for W and T in one quadrant (say 
the 1st quadrant). The conditions to be applied 

Y 

I 

; 
0 

FIG. 10. Rectangular grid system 
procedure. 

on the horizontal and vertical 
that 

aw aT o 
an=zi= ’ 

for finite-difference 

boundaries are 

where n is the normal to the appropriate edge. 
In order to avoid the problem of interpolation 
at the sloping boundary, a rectangular 
used such that the horizontal step size 

r;=x= l 
N 2N sin a/2’ 

grid was 

(A.11 

where N is the number of intervals along the 
X or Y axis. 
The vertical step size 

r;=Y= l 
N 2N sin a/2 

= h tan a/2. 64.2) 
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Let Xi = in, x=jE 

and 

W, j = w(xi, q), ~,, = T(Xi, ~). 

Then the standard 5-point approximation 
the Laplacian at the point i, j, is 

CONVECTION IN 

of 

1 

+ ti2tan2 a/2 
~,j+l + z,j-l - . (A.31 

Let 

Si,jT = T+l,j + T-1.j 

+ &tT,j+l + T,j-lh 

and let o be the over-relaxation constant, 
then equations (7) and (8) become 

~,j = 
0 

2(1 + l/tan a/s) 
{h2(NR0F, j + @ 

+ Si,jT) + (1 - O) ~,j, (A.4) 

Tj 2(1 + ian ap) fh2cF - K3 + si, jTl 
+ (1 - W) T,j (A.5) 

Now the algorithm proceeds as follows. 
An initial distribution of W and T is assumed, 

as is a value of E. Then new values of W and T 
are calculated at each interior point of the grid 
using equations (A4) and (A5). (The points on 
the horizontal and vertical boundaries are 
calculated in a different manner which will be 
described shortly.) 

Then W and T are re-calculated until on 
two consecutive iterations, the difference be- 
tween the new and the old value of both Wand 
T at every point differ in absolute value by not 
more than E (usually E x 10w5). 

Once the shape of W and T has “settled”, 
the continuity equation (9) has to be checked. 
If it does not hold, then E has to be modified. 

Thus define 

f(E) 

DUCTS 

= WdXdY -7 
s 

1 

sin a 
(A.6) 

A 

and E must be chosen so that f (E) = 0. A better 
value of E was determined using Newton’s 
method for finding a zero of a non-linear 
equation, namely 

E, = El_, - M, 
1 1 

where 1 represents the iteration number. 
After a new E is determined, W and T had 

to be “re-settled” as described above. 
Still to be discussed is how the values are 

calculated for both W and T (on every iteration) 
along the horizontal and vertical boundaries. 
Using the forward-difference approximation 
for the derivative of a function at a point, one 
obtains 

T,j = 84G.j - T,,J, j = 1,2,, . . N - 2, 

for the points along the vertical boundary. 
Similar.equations hold for T along the horizontal 
boundary and W along both the vertical and 
horizontal boundaries. The formula for the 
functions at the points (1, l), (N, 1) and (1, N) 
have still to be given. It turns out that they are 
not needed during the “settling” of W and T 
and so need to be calculated only when E is 
being calculated. A simple average of the value 
of the function at the two nearest neighbours 
is used. 

Comments 

The practical problem of choosing an appro- 
priate step size h, an over-relaxation constant 
o and the initial distribution of W and T 
remains to be discussed. 

It was found that 50 intervals (N = 50) was 
about the minimum number required to guaran- 
tee an accurate shape for W and T. However, 
if the initial distribution of W and T were 
made zero, the number of iterations required 
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to ‘“settle” the shape of W and T was prohibi- 
tive. Thus a value of N = 20 was first used to 
obtain a rough shape which was used as the 
initial distribution for the N = 50 case. A 
number of values of o were tried, but o = 1.8 
seemed to be about the best. 

With any value of o between 1.0 and l-9, 
the shape of the functions W and T were found 
to oscillate (as a function of the number of 
iterations). It was observed that when W was 
at an extremum, T had about the right (final) 
shape and vice versa. This fact was used to 
speed up convergence by saving the values of 
W when T was at an extremum, then when W 
was at an extremum, it was replaced by the 
previous saved values. This reduced the time 
for convergence by about a factor of 4. However, 
there still remains room for improvement in 
the methods used to further speed up conver- 
gence. 

Table 1 presents sample values of the Nusselt 
number evaluated by the finite-difference 
method. In the same table, results of the varia- 
tional formulation are also given for the sake of 
comparison. 

In this Appendix, an exact solution of forced 
convection through a rhombic duct is presented. 

For the case of pure forced convection 
(iVRD = 0) and for F = 0 equations (7) and (8) 
reduce to 

V;W= -E, (B.1) 

V;T - W = 0. (B.2) 

These combine into 

V4T = -E. (B-3) 

The boundary conditions for this case are 

W=T=O, 

which are equivalent to 

T = V;T = 0 

at the boundary. 

(B.4) 

The problem posed by equations (B3) and 
(B4) is easily seen to be equivalent to the problem 
of deflection of a simply supported plate. Since 
the solution to this latter problem is available 
in the literature [17] for a parallelogram, we 
simply write down the expressions for velocity 
and temperature for the rhombic duct. 

and 

-E/l4 

T= 16 
z?2?/414 

Here the rhombus in [ (= X + i Y) plane has 
been mapped onto a unit circle in the c( =oe’@‘) 
plane, II and $‘s are co-efficients of mapping, 

m 

is the mapping. Bar over a quantity and the 
letters C.C. denote “complex conjugate”. 

* Number of symbols required makes a certain amount 
of overlap in nomenclature unavoidable. 
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To compare the results obtained from (B5) methods, in Table 2. This table shows that the 
and (B6) with the result obtained by the varia- agreement between these two methods is very 
tional solution we present the values of W and good. 

T at the center of the duct by these two different 

R&urn-n Ctudie la convection mixte (naturelle et for&e) laminaire entibrement ttablie B travers des 
tuyaux verticaux B sections non-circulaires. Les gtom&ries examinbs sont les tuyaux dont la section est 
(i) un triangle rectangulaire, (ii) un triangle iso&le, et (iii) un losange. 

On suppose soit que le flux de chaleur axial est uniforme soit que la temptrature pa&tale est uniforme 
le long du pCrimbtre. Toutes les propriMs du fluide sont suppos&es constantes, sauf pour la variation de la 
masse volumique dans les termes de flottaison. Les solutions approchks du probl&me ont Ctk obtenues par 
(i) le calcul des variations, (ii) le processus de differences tinies. 

Pour le tuyau losangique, on prtsente aussi une solution exacte pour la convection uniquement for&e. 
Pour le triangle rectangulaire, et pour N RY = 0, la valeur maximale du nombre de Nusselt est obtenue 
lorsque a = 45”, tandis que, lorsque NR. = 1000, sa valeur minimale est obtenue lorsque a = 45”. Pour 
le triangle isocble, le nombre de Nusselt devient insensible kgalement B l’angle du tuyau lorsque la valeur 
du nombre de Rayleigh augmente de ztro & environ deux mille. Lorsque le nombre de Rayleigh est encore 
augment& jusqu’g dix mille, I’angle du tuyau devient de nouveau important. Pour le triangle isoctle, et 
pour N,, = 0, la valeur maximale du nombre de Nusselt est obtenue pour a = 60”, tandis que, pour 
N,, = 10000, sa valeur maximale se prtsente pour a = 60”. Pour le tuyau losangique, l’effet de I’angle 

du tuyau diminue lorsque la valeur du nombre de Rayleigh augmente g partir de z&o. 

Zusammenfassung-Es wird eine vollausgebildete, laminare Strijmung in senkrechten, nicht kreisfcrmigen 
Rohren behandelt, die durch kombinierte freie und erzwungene Konvektion bewirkt wird. Die behandelten 
Rohrquerschnitte sind : (i) rechtwinkeliges Dreieck, (ii) gleichschenkeliges Dreieck und (iii) Raute. 
Konstanter axialer WLrmefluss und am Umfang konstante Wandtemperatur werden angenommen. 
Alle Eigenschaften des Strijmungsmediums werden als konstant betrachtet, mit Ausnahme vergnderlicher 
Dichte in den Auftriebsgliedem Nlherungsliisungen des Problems werden durch Variationsrechnungen 
und mit Differenzenverfahren erhalten. Fiir rautenfijrmige Rohrquerschnitte wird bei rein erzwungener 
Konvektion such eine exakte Lijsung angegeben. 

Fiir rechtwinklige Dreiecke hat der Rohrwinkel a keinen Einfluss auf die Nusselt-Zahl Nu, solange der 
Wert der Rayleigh-Zahl von 0 bis etwa 2OOU ansteigt Wird die Rayleigh-Zahl weiter erhahf bis etwa 10000. 
so wgchst der Einfluss des Rohrwinkels wieder. Fiir rechtwinkelige Dreiecke wird fiir NRa = 0 der griissje 
Wert der Nusselt-Zahl bei a = 45” erreicht, wlhrend sie ftir N R. = 10000 ihren niedrigsten Wert bei 
a = 45” hat. Fiir gleichschenkelige Dreiecke hat der Rohrwinkel ebenfalls keinen Einfluss auf die Nusselt- 
Zahl, wenn der Wert der Rayleigl-Zahl von 0 bis etwa 2000 steigt Wird die Rayleigh-Zahl weiter erhijht, 
bis 10000, so erhijht sich der Einfluss des Rohrwinkels wieder. Fiir gleichschenkelige Dreiecke erhllt 
man bei N,, = 0 den grijssten Wert der Nusselt-Zahl fiir a = 60”, warend fiir N,, = 10000 ihr grijsster 
Wert bei a = 90” liegt. 

Fiir rautenfarmige Rohrquerschnitte verschwindet der Einfluss des Rohrwinkels, wenn der Wert der 
Rayleigh-Zahl von Null ausgehend ansteigt. 

fhHOTaIUIa- npOBeReH0 HCCJIe~OBaHIJe nOJIHOCTbl0 pa3BHTOrO JIaMAHapHOrO TeYeHHR npH 
COBMeCTHOti CB060A~Oti H BblHy?KAeHHOfi KOHBeKqllll B BepTHKaJlbHOM KaHaJle HeKpyrJIOrO 
ce9eHHn. PaccMaTpnBaIOTcn KaHaw cneAyIowet reoMeTpHK nonepesHor0 ce9efniH: nparo- 
yrOJIbHbd TpeyrOJIbHMK, paBHO6eApeHHbIti TpeyrOJIbHHK, pOM6. npeAOOJIaraeTCfi 1130Tep- 
MEiYHOCTb CTeHOK I4 OAHOpOAHOCTb OCeBOrO TetIJIOBOrO nOTOKa. Bee CBOiCTBa HCEIAKOCTII 
cwiTawTcR ~OCTOHHH~IMH 38 kicKnH)qeHMerd ~JIOTHOCTA B weHax noAseMHoti CMJI~I. npn- 
6nkUKeHHbIe pelrreHkin nonyseHbl c IIOMOWbIO (a)onepau~oHHoro HCYHCJIeHIIfl II (6)MeTOAOM 
KOHeYHbIX pa3HOCTet. &In CJlyYaU TOJIbKO BbIHyH@eHHOfi KOHBeKI&riM B poM6wiecKnx 
KaHaJlaX nOJIyseH0 TaKWe TO'IHOe pelUeHHe. &fH npHMOyrOJIbHOr0 TPeJ'rOJlbHMKa WWJIO 

HyccenbTa (N~~)we sasacaToTyrnaKaHana(a), Toria KaKqacno PeJreR(jVRa)nosbrmaeTcR 
OT 0 A0 2000. npR AanbHeZtrrreM yBenaqeHna wcn& PezeH,cKameM,~o 10000,yron KaHana 
OnRTb HaYHHat?T OKa3bIBaTb BJIURHWe. &IH npHMOyrOnbHOr0 TpeyrOnbHHKa npU NR,, = 0 
MaKckwazbHoe 3Ha4eHkie wwjIa HyccenbTa nonysaeTcRnpkia = 45°.~~~pa~~06e~pe~~oro 
TpeyroJrGiHKa WUXO HyccejrbTa 0nnTb nepecTaeT aaBuceTboTyrJIaKaHaJIanpuysenw4eHnn 
wcna Penen OT 0 A0 2000. IIpa AanbHettllreM pocTe slzcna Penefi ~0 10000 yron KaHana 
OnFITb CTaHOBMTCH BaHiHbIM (PaKTOpOM. &IH paBHO6eApeHHOrO TpeyrOnbHAKanpMNRa = 0 
MaKCHManbHOe 3HaYeHkie WEJIB HycCenbTa nonyqeH0 npll a f 60°, TOrna KPK npH 
N ~a = lOc@O era MaKCMManbHOe 3HaYeHAe COOTBeTCTByeT 0 = 90'. @IfI pOM6HYeCKHX 

KaHaJiOB BnHRHkie yrna yhieHbluaeTcH npa NR,, > 0. 


